In mathematics, especially in the fields of group cohomology, homological algebra and number theory the Lyndon spectral sequence or Hochschild–Serre spectral sequence is a spectral sequence relating the group cohomology of a normal subgroup N and the quotient group G/N to the cohomology of the total group G.
The precise statement is as follows:
Let G be a finite group, N be a normal subgroup. The latter ensures that the quotient G/N is a group, as well. Finally, let A be a G-module. Then there is a spectral sequence:
The same statement holds if G is a profinite group and N is a closed normal subgroup.
The associated five-term exact sequence is the usual inflation-restriction exact sequence:
The spectral sequence is an instance of the more general Grothendieck spectral sequence of the composition of two derived functors. Indeed, H∗(G, -) is the derived functor of (−)G (i.e. taking G-invariants) and the composition of the functors (−)N and (−)G/N is exactly (−)G.
A similar spectral sequence exists for group homology, as opposed to group cohomology, as well.[1]